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Abstract
The shifts of the fundamental and optical bandgap energies as functions of
dopant concentration in heavily n-type and p-type doped Si1−x Gex (x � 0.3)
have been investigated theoretically. The band structure of the intrinsic
crystal was described by the k · p-perturbation method, where the Kohn–
Luttinger parameters were determined from a first-principles and full-potential
band-structure calculation. The doping-induced effects on the bandgap were
thereafter calculated using a zero-temperature Green function formalism within
the random phase approximation and with a local field correction of Hubbard.
We found only small effects on the bandgap energies due to variation of
composition x . The calculated bandgap narrowing of Si and of Si0.82Ge0.18

were found to be in good agreement with photoluminescence measurements.

1. Introduction

Doping has a strong influence on the electronic properties of a semiconductor, especially on the
fundamental and optical bandgaps. This effect is important for the design of semiconductor
devices. Heavily doped Si1−x Gex is for instance used in transistors in order to shrink the
width of pn-junctions and in solar cells in order to improve the emitter efficiency. For further
applications, see e.g. [1–3].

In this work, the effect of high concentration n-type and p-type doping (i.e., for
concentrations above the Mott critical density [8]) of Si1−x Gex is studied. For these
concentrations the donors (in n-type materials) can be regarded as fully ionized even at zero
temperature, and the donor electrons thus form an electron gas in the conduction band [8].
Interactions occurring due to the presence of these electrons and the ionized donors change
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the physical properties of the crystal, for instance the total energy. The different interactions
contributing to the change of the total energy of the crystal are those

(i) between the electron gas and the ionized impurities,
(ii) between the electrons within the electron gas,

(iii) between the valence band electrons and the ionized impurities and
(iv) between the valence band electrons and the electron gas.

The additional energy is assumed to be a perturbation to the energy of the intrinsic
crystal: Ĥ = Ĥ 0 + Ĥ 1, where Ĥ 0 is the unperturbed Hamiltonian and Ĥ 1 is the perturbation
Hamiltonian. The difference between the actual energy of a single electron in the doped crystal
E j (k) and the energy of the corresponding electron in the undoped crystal E0

j (k) is the real
part of the self-energy of the electron state: E j(k) − E0

j (k) = Re [h̄� j (k, E0
j (k)/h̄)]. n-type

doping does not only have an effect on the electron states in the conduction bands but also
on the electron states in the valence bands due to the screening of the electron gas. Usually,
the self-energies of conduction band states are negative and the self-energies of valence band
states are positive. The sum of the self-energy at the maximum of the uppermost valence band
and the self-energy at the minimum of the lowest conduction band is the so called bandgap
narrowing (BGN) of the fundamental bandgap. The description above is for n-type doped
materials, but the corresponding holds for p-type doping. If the differences between n- and
p-type doping are not explicitly mentioned further on in the text, both n- and p-type doping
can be regarded to produce the same effect on the bandgap.

The valence band structure of the intrinsic crystal was described within the six-band
k · p-perturbation theory [4–7]. The numerical parameters for this perturbation theory are
determined from a first-principle, full-potential linearized augmented plane wave (FPLAPW)
calculation [9]. Thus, the non-parabolicity of the valence bands has been taken into account.
The BGN was thereafter calculated with a zero-temperature Green function formalism
within the random phase approximation (RPA) [10, 11] and with a local field correction of
Hubbard [12].

Calculations of doping induced BGN in semiconductors were performed earlier. Jain and
Roulston [13] used a semi-empirical method to obtain the BGN, and they also used spherical
valence bands and approximated overlap integrals. Sernelius [14] and Persson et al [15, 16]
calculated the BGN for other materials than Si1−x Gex , for instance, GaAs and SiC. Sernelius
[14] improved the BGN calculation by applying a more complete Green function method.
Persson et al [15, 16] used the same Green function formalism as in [14], but they improved
the description of the valence bands by incorporating a full band structure calculation. In the
present calculation we follow the computational scheme of Persson et al [15, 16], however,
now by using the k·p-perturbation method to describe the valence bands. The difference is that
instead of describing the bands with energy values for discrete k-points, only three parameters
are necessary in order to calculate the energies and overlap integrals of the three uppermost
valence bands. The use of this method has the advantage of being a much faster calculation.
The overlap integrals between the different valence bands are improved and, moreover, the
Fermi surface can be well described also for p-type materials. Since the numerical parameters
in the k · p-method are determined from the results of the FPLAPW calculation, the valence
bands are described accurately in a region near the �-point.

In this article, CGS units are used. In the performed calculations the lowest conduction
band c1 and the three uppermost valence bands v1, v2, v3 have been considered. The v1-band
is the uppermost valence band. Since we are only treating cubic materials, these valence bands
are the so called heavy-hole, light-hole and spin–orbit bands.
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Figure 1. Schematic drawing of the energy bands of the intrinsic crystal (dashed curves) and of
the shifted energy bands in a heavily doped n-type semiconductor (solid curves). The shaded parts
show the occupied states up to the Fermi energy of the electron gas Ec

F . The optical bandgap E1
g

and the reduced band gap E2
g are indicated as well as the fundamental bandgap of the intrinsic

crystal E0
g .

The effect of n-type doping above the Mott critical density is sketched in figure 1. The
energy bands and the fundamental bandgap E0

g of the intrinsic crystal are indicated, as well as
the energy bands, the optical E1

g and the reduced E2
g bandgaps of the doped crystal.

2. Computational method

2.1. Band structure of the intrinsic crystal

The calculation of the electronic structure of intrinsic Si1−x Gex (i.e., E0
j (k)) was based on a

first-principles, FPLAPW method [9]. The relativistic Hamiltonian was formulated within the
local density approximation (LDA) to the density functional theory (DFT). We have chosen
the exchange–correlation potential of Perdew and Wang [17], which is a parametrization of
Ceperley–Alder data [18]. The band structure was calculated by using the experimental
value [19] of the lattice constant: a = 5.4310 + 0.2265x Å. The employed band-structure
calculation has been found to describe the energy dispersion (i.e., the effective electron and
hole masses) of intrinsic Si very accurately [20].

The LDA/DFT is well known to underestimate the fundamental band gap in
semiconductors strongly. However, Si rich SiGe alloys have relatively large bandgap and
scattering across the bandgap can therefore be neglected in the present Green function
formalism. This means that the doping-induced energy shift of the bandgap �Eg does not
depend on the value of the fundamental bandgap. Calculating the electronic structure of
Si1−x Gex alloys we have applied an approach within the virtual-crystal approximation [21].
Since Si and SiGe have very similar bonds, the energy states of the Si1−x Gex valence electrons
can be obtained approximatively as a linear combination of the corresponding Hamiltonians
of the Si and SiGe valence states:

Ĥ 0,valence
Si1−x Gex

= Ĥ 0,valence
Si (1 − 2x) + Ĥ 0,valence

SiGe 2x

Ĥ 0
Si = Ĥ 0,core

Si + Ĥ 0,valence
Si1−x Gex

Ĥ 0
SiGe = Ĥ 0,core

SiGe + Ĥ 0,valence
Si1−x Gex

.
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The Kohn–Sham equations of Ĥ 0
Si and Ĥ 0

SiGe are both solved self-consistently with the FPLAPW
method to obtain Ĥ 0,valence

Si1−x Gex
. By using the valence Hamiltonian of SiGe (Ĥ 0,valence

SiGe ) instead
of the corresponding Hamiltonian of Ge, the total Hamiltonian of the valence states has zinc-
blende (T4

d) symmetry for x > 0 (and diamond, O7
h, symmetry for x = 0). This is a more

realistic treatment than using a Hamiltonian with O7
h symmetry also for x > 0, which was

used by Krishnamurthy et al [22] in empirical pseudopotential calculations of the electronic
structure of SiGe alloys. For instance, in contrast to the situation in the diamond structure, the
two lowest conduction bands in the zinc-blende structure are non-degenerate at the X-point.
This symmetry related splitting is important for the longitudinal effective electron mass m‖

c1
since the mass value increases when the lowest conduction band becomes flatter due to the
splitting. The transverse effective electron mass m⊥

c1 is less affected. From the FPLAPW
calculations, we found that the effective mass components for x � 0.3 can be written as

m‖
c1(x) = (0.971 + 0.159x) m0

m⊥
c1(x) = 0.193 m0,

(1)

which for x = 0 are in good agreement with the experimental mass components of Si:
m‖

c1 = 0.92 m0 and m⊥
c1 = 0.19 m0 [23]. The calculated energy dispersion of the lowest

conduction band was found to be parabolic in the energy regime which is of importance in
the present investigations. We therefore use a parabolic conduction band, represented by the
effective masses of equation (1).

In order to speed up the BGN calculation the valence band structure of the intrinsic
Si1−x Gex crystal is obtained using the k · p-perturbation method [4–7], which is a method to
obtain the energy values and eigenfunctions at k-points that are near a k-point (here, denoted
k0) with well known energies and energy functions. The different energy states of the valence
bands are the eigenvalues of the Kohn–Luttinger Hamiltonian [4, 5], a 6 × 6 matrix which for
cubic materials and for k0 = 0 is given by

H = −




Hv1 b c 0 ib/
√

2 −i
√

2c
b∗ Hv2 0 c −iq i

√
3/2b

c∗ 0 Hv2 −b −i
√

3/2b∗ −iq
0 c∗ −b∗ Hv1 −i

√
2c∗ −ib∗/

√
2

−ib∗/
√

2 iq i
√

3/2b i
√

2c Hv3 0
i
√

2c∗ −i
√

3/2b∗ iq ib/
√

2 0 Hv3




. (2)

The elements in the matrix are

Hv1 = h̄2

2m0
[(γ1 + γ2)(k

2
x + k2

y) + (γ1 − 2γ2)k
2
z ] (3a)

Hv2 = h̄2

2m0
[(γ1 − γ2)(k

2
x + k2

y) + (γ1 + 2γ2)k
2
z ] (3b)

Hv3 = (Hv1 + Hv2)/2 + �0 (3c)

b = −
√

3ih̄2

m0
γ3(kx − iky)kz (3d)

c =
√

3h̄2

2m0
[γ2(k

2
x − k2

y) − 2iγ3kxky] (3e)

q = (Hv1 − Hv2)/
√

2. (3f)

�0 is the energy split between the two uppermost valence bands and the spin–orbit band. This
spin–orbit split-off energy was obtained from the full-potential band structure calculation and
can be parametrized by

�0 = (0.047 + 0.251x) eV; x � 0.3. (4)
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To solve this eigenvalue problem, the Kohn–Luttinger parameters γ1, γ2 and γ3 have to be
found. This is carried out by fitting the results from the full-potential band-structurecalculation
to the eigenvalues of the Kohn–Luttinger Hamiltonian (with varying γ -values). Therefore, a
calculation routine, which minimizes the difference in energy between the full self-consistently
calculated FPLAPW band energies and the eigenvalues of the Kohn–Luttinger Hamiltonian,
is used. About 750 k-values with |k| � 0.01(2π/a) in various directions were used.

The Kohn–Luttinger parameters can be described with good accuracy by quadratic
functions in composition x :

γ1 = 4.5304 + 2.6877x + 2.9908x2 (5a)

γ2 = 0.3605 + 0.8461x + 1.9291x2 (5b)

γ3 = 1.5163 + 1.1834x + 1.6295x2. (5c)

If the interaction between the two uppermost valence bands and the spin–orbit band is
considered to be negligible, the Kohn–Luttinger Hamiltonian can be separated into a 4 × 4
matrix and a 2 × 2 matrix. The problem can then be solved analytically [7]. In the present
calculation, however, we have used the full 6 × 6 matrix and instead solved the eigenvalue
problem numerically.

Furthermore, the numerical solution has the advantage to give better eigenvectors A j of
the Hamiltonian. The vector components of A j are the coefficients of a decomposition of
the periodic part of the Bloch functions u0

jσ (k′, r) into the pure angular momentum states
� jσ (k0, r) = |3/2,±3/2〉, |3/2,±1/2〉, |1/2,±1/2〉 for k0 = 0

u0
jσ (k′, r) =

∑
i,µ

A jσ,iµ(k′,k0)�iµ(k0, r), (6)

where the A jσ,iµ(k′,k0) are the matrix elements of the 6 × 6 eigenstate matrix of the Kohn–
Luttinger Hamiltonian. Since�iµ(k0, r) are orthogonal, the spin independent overlap integrals
� j, j ′(k0,k′), which are used in the description of scattering events [24, 25], can easily be
calculated for the valence bands:

� j, j ′(k0,k′) = 1
2

∑
σ,σ ′=↑↓

∣∣∣∣
∫

dr u0
jσ (k0, r)u0

j ′σ ′(k
′, r)

∣∣∣∣
2

. (7)

To use these energies in a spin independent Green function formalism, we average over
E0

j↑(k) and E0
j↓(k). For Si the spin up band and the spin down band are degenerate. For

Si1−x Gex (x > 0) the difference between E0
j↑(k) and E0

j↓(k) is small. This averaging therefore
only produces a small error.

The approximated energy bands have a better accuracy closer to the �-point than far
out in the Brillouin zone, because k-points in the vicinity of the �-point have been weighted
stronger in the minimization routine. Nevertheless, we obtain a good agreement between the
approximated valence bands and the FPLAPW valence bands down to the Fermi energy of the
p-type doped crystal, and we can therefore obtain a good dielectric function (see section 2.2)
by using the energy bands and the overlap integrals from the Kohn–Luttinger parametrization.

2.2. Self-energy due to doping

The self-energies are expressed in terms of the unperturbed, time-ordered Green function
G0

j (k, ω) (for both n- and p-type) and the dielectric function ε̃(q, ω) of the electron gas (for
n-type Si1−x Gex) or hole gas (for p-type Si1−x Gex), respectively.

G0
j (k, ω) = η0

j (k)

ω − ξ0
j (k) − iδ

+
1 − η0

j (k)

ω − ξ0
j (k) + iδ

; ξ0
j (k) = E0

j (k)/h̄. (8)
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η0
j (k) is the occupation number (i.e., η0

j (k) = 1 if |k, j〉 is occupied and 0 otherwise). δ is a
positive infinitesimal small number. Within the RPA and including the local-field correction
f̄ (q) of Hubbard [12], the dielectric function ε̃(q, ω) can be written as [10, 14, 26, 27]

ε̃(q, ω) = 1 − (1 − f̄ (q))
2

h̄

v(q)

κ

∫
dk

(2π)3

∫ ∞

−∞
dω′

2π i

∑
j

G0
j (k, ω′)G0

j (k + q, ω′ + ω). (9)

The summation indices are j = c1 for n-type materials and j = v1, v2, v3 for p-type
materials and v(q) is the Coulomb potential and κ the static dielectric function of the host
material [10, 14, 27]. The local field correction of Hubbard can be written for n-type materials
as

f̄ (q) = 1

2ν2

ν∑
i=1

E0
c1(�ki + q)

E0
c1(�ki + q) + Ec

F

, (10)

where �ki = k0,i −k0,1 is the vector between the different equivalent minima of the conduction
band and one specific conduction band minimum k0,1. ν is the number of conduction band
minima (ν = 6 in the case of Si1−x Gex , x � 0.3), and Ec

F is the Fermi energy of the electron
gas in the conduction band. The corresponding expression for p-type materials is

f̄ (q) = 1

2ν2
p

v3∑
j=v1

E0
j (q)�(E0

j (0) − Ev
F )

E0
j (q) + Ev

F

, (11)

where νp is the number of populated valence bands, �(E0
j (0) − Ev

F ) is the Heaviside step
function and Ev

F is the Fermi energy of the hole gas in the valence bands.
For n-type material the energy shifts of the lowest conduction band �Ec1 and of the

uppermost valence band �Ev1 are [10, 11]

�E j = −Re
∫

dq

(2π)3

∫
dω

2π i

∑
j ′

� j, j ′(k0,k′)
v(q)

κ

{
G0

j ′(k′, ω + ξ0
j (k0))

ε̃(q, ω)

+
1

2

(
1

ω + (ξ0
j ′(k′) − ξ0

j (k0)) − iδ
− 1

ω − (ξ0
j ′(k′) − ξ0

j (k0)) + iδ

)}

+ Re
∫

dq

(2π)3

ND

h̄

(
v(q)

κε̃(q, 0)

)2 ∑
j ′

� j, j ′(k0,k′)G0
j ′(k

′, ξ0
j (k0)), (12)

where k′ = k0 + q. For the highest valence band maximum j = v1 and k0 = 0, whereas
for one of the six lowest and equivalent conduction band minima j = c1 and k0 = k0,1.
The different contributions to the energy shift are the exchange–correlation energy (first
term in equation (12)), the electrostatic self-interaction (second term) and the electron–donor
interaction (third term). ND is the donor ion concentration.

In figure 2 the different contributions to the energy shift of the lowest conduction band
�Ec1 are plotted for n-type (a) and p-type (b) Si. The electron–electron contribution (the
exchange–correlation energy plus the electrostatic self-interaction) is about 25% larger than
the electron–ion contribution. In the calculation of the dielectric function in equation (9) we
include the local-field correction f̄ (q) of Hubbard [12]. This correction is rather small as can
be seen in figure 2, where the dashed lines represent the calculations excluding the Hubbard
correction.

Equation (12) is valid for n-type Si1−x Gex , but one can also use the same expression for
p-type material by treating the holes as particles and the electrons as antiparticles. That implies
�E j has to be changed to −�E j and ξ0

j (k0) to −ξ0
j (k0). Moreover, the donor concentration

ND has to be replaced by the acceptor concentration NA .
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Figure 2. The sum of the exchange–correlation self-energy and the electrostatic self-interaction (i)
and the electron–ion contribution (ii) to the shift of the lowest conduction band �Ec1 in n-type (a)
and p-type (b) Si. The solid lines represent the calculation including the Hubbard local-field
correction. The dashed lines refer to the calculation without the correction.

Equation (9) was calculated analytically assuming parabolic conduction bands (for n-
type materials) and spherical valence bands (for p-type materials) for the energies in the
two Green functions. For the n-type crystal this holds since we in general assume parabolic
conduction bands. For p-type this is a rather bad approximation since the valence bands are
very non-parabolic. Instead of taking the effective masses at the valence band maximum
to describe the curvature of the energy dispersion relations, we introduce hole concentration
dependent density-of-states masses. The masses are chosen in such a way that the band filling
corresponds exactly to the Fermi energy Ev

F of the hole gas in the true FPLAPW valence bands.
For low concentration only the v1- and v2-bands are filled with holes and beyond a certain
concentration the v3-band is also filled. By this treatment the non-parabolicity of the valence
bands is considered in an approximate but reasonable way [10]. The concentration dependent
density-of-states masses of the three uppermost valence bands are shown in figure 3.

The polarity of the Si–Ge bond can with reasonable accuracy be neglected [28], which
means that the zero-frequency transverse optical and longitudinal optical modes are degenerate.
We therefore assume that Si1−x Gex is nonpolar. From the FPLAPW calculation we obtained
the lattice dielectric function in the Si rich regime as

κ(x) = 12.49 − 0.84x; x � 0.3, (13)

which for x = 0 is slightly larger than the experimental value of Si: κ = 11.7–12.1 [23].
The overlap integrals � j, j ′(k0,k′) in equation (12) have to be calculated only for the

valence bands. For the conduction bands �c1,c1(k0,k′) can be regarded to be unity, if k0

and k′ are in the same minimum [16], and scattering between the six different but equivalent
conduction band minima can be neglected [29]. Scattering between the valence bands and the
conduction bands is assumed to be negligible since the bandgap of Si1−x Gex is relatively large.

Because the two uppermost valence bands are degenerate at the �-point, the overlap
integrals �vi,vi ′ (0, q) for i = 1, 2 have to be replaced by the average overlap integral
[�v1,vi ′ (0, q) + �v2,vi ′ (0, q)]/2. In previous calculations [14] the overlap integrals between
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Figure 3. The dielectric function ε̃(q, ω) in equation (9) was calculated by introducing the
concentration dependent density-of-states masses mv1(p) (i), mv2(p) (ii) and mv3(p) (iii) for
the three uppermost valence bands. We show the density-of-states masses of Si (solid curves) and
of Si0.7Ge0.3 (dotted curves).

different states in the valence bands were approximated by assuming parabolicity of the valence
bands and not taking into account the spin–orbit band. The overlap integrals �vi,vi ′ (k,k′)
were approximated by �

app
v1,v1(�) = 0.25 + 0.75 cos2(�), �

app
v1,v2(�) = 0.75 sin2(�) and

�
app
v1,v3(�) = 0 [24]. � is the angle between the vectors k and k′.

The differences between approximated overlap integrals and those overlap integrals
calculated with the k · p-method are large, as shown in figure 4. In figure 5, the overlap
integrals �v1,vi (0,k′) are plotted in two different directions in the k-space. Again, the values
are most accurate close to the �-point.

3. Results

The outcome of the BGN calculation is presented in figures 6–8. In figure 6, the energy shifts
of the lowest conduction band minimum �Ec1 and of the highest valence band maximum
�Ev1 are shown as functions of dopant concentration for n-type as well as p-type Si and
Si0.7Ge0.3. The solid curves represent the present k · p-method values. These energy shifts
can be parametrized with respect to the dopant concentration. For n-type doping the shifts can
be expressed as

�Ec1 = An,c1(ND10−18 cm3)1/3 + Bn,c1(ND10−18 cm3)1/2 (14a)

�Ev1 = An,v1(ND10−18 cm3)1/4 + Bn,v1(ND10−18 cm3)1/2. (14b)

The parametrization was originally presented by Jain and Roulston [13] expounded from a
semi-empirical description and by using the parabolic approximation. Here, we also use
the expansion for the more complete Green function model and in the full band-structure
calculations. For p-type doping the corresponding expressions are

�Ec1 = A p,c1(NA10−18 cm3)1/4 + Bp,c1(NA10−18 cm3)1/2 (15a)

�Ev1 = A p,v1(NA10−18 cm3)1/3 + Bp,v1(NA10−18 cm3)1/2. (15b)
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for different compositions of Si and Ge are similar. The dashed curves are the commonly used
approximations �

app
v1,v1 (a) and �

app
v1,v2 (b).
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Figure 5. Energies and overlap integrals of the three uppermost valence bands v1 (1), v2 (2) and
v3 (3) of Si in the directions �X = � (right-hand side of the figure) and �K = � (left-hand side).

ND and NA are the donor and acceptor concentrations, respectively, in units of cm−3. The
fitted parameters in terms of composition x � 0.3 are shown in table 1. The maximum error of
the parametrization is 4 meV. For different compositions of Si1−x Gex (x � 0.3) the results are
almost the same. This is not surprising, since the band structure of the intrinsic crystal does
not change much, as can be seen from the small changes of the γ -values with varying x (see
equation (5)). Because of these small differences, we have only presented the results for x = 0
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Figure 6. Energy shifts of the uppermost valence band maximum �Ev1 (1) and the lowest
conduction band minimum �Ec1 (2) in n-type (a) and p-type (b) Si (thin curves) and Si0.7Ge0.3
(thick curves), obtained with the 6 × 6 Hamiltonian matrix. The dashed curves refer to the parabolic
approximation.

Table 1. Parameters describing the energy shifts of the conduction band minimum and of the
valence band maximum as functions of composition x , see equations (14) and (15).

n-type: An,c1(x) = −13.9554 − 2.6464x − 3.7560x2 meV
Bn,c1(x) = 0.5781 + 0.2951x − 0.1021x2 meV
An,v1(x) = 14.3045 − 1.1039x − 3.0072x2 meV
Bn,v1(x) = 1.4416 − 0.5516x − 0.3467x2 meV

p-type: Ap,c1(x) = −15.2906 − 12.8051x + 9.4402x2 meV
Bp,c1(x) = −0.4845 + 0.9021x − 1.4899x2 meV
Ap,v1(x) = 16.5817 + 12.1164x − 16.3495x2 meV
Bp,v1(x) = −0.9045 − 3.0309x + 4.2782x2 meV

and 0.3 in the figures. Nevertheless, the parametrization of An,c1, Bn,c1 etc was determined
with the values for x = 0, 0.1, 0.2 and 0.3.

The dashed curves in figures 5 and 6 refer to the parabolic approximation of the valence
bands. Here we used the effective masses at the �-point of the k · p-perturbation method,
averaged over all directions in k-space. The masses can be parametrized in terms of
composition x for x � 0.3 by

mv1(x) = (0.4626 − 0.1584x + 0.1248x2) m0 (16a)

mv2(x) = (0.1410 − 0.1103x + 0.0048x2) m0 (16b)

mv3(x) = (0.2006 − 0.1031x − 0.0576x2) m0. (16c)

For Si these spherical effective mass values are in good agreement with experimental values:
mv1 = 0.537 m0, mv2 = 0.153 m0 and mv3 = 0.234 m0 − 0.29 m0 [23].

In figure 7, the reduced bandgap E2
g = E0

g + �Ec1 − �Ev1 and the optical bandgap
E1

g are plotted versus the dopant concentration for Si and Si0.7Ge0.3. We have used the
experimental value of the fundamental bandgap of the undoped crystal: E0

g(x) = (1.155 −
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Figure 7. Optical E1
g (1) and reduced E2

g (2) bandgap energies in n-type (a) and p-type (b) Si (i)
and Si0.7Ge0.3 (ii). The solid curves represent the calculation with the 6 × 6 Hamiltonian matrix.
The dashed curves refer to the parabolic approximation. Also shown are the experimental values
of the reduced bandgap in n-type Si by Wagner and del Alamo [31] (open circles and triangles), by
Dumke [32] (squares) and by Lanyon and Tuft [33] (plus signs). For p-type Si we show experimental
values of the reduced bandgap by Wagner and del Alamo [31] (open circles and triangles). Filled
circles refer to the measured optical bandgap by Wagner and del Alamo [31], for both n-type and
p-type Si.

0.43x + 0.206x2) eV for x � 0.85 [30]. The optical bandgap was calculated by neglecting
changes of the band curvature, i.e., the Fermi energy EF of the doped crystal was obtained by
assuming the band structure of the intrinsic one: E1

g = E2
g + EF . This approximation causes

negligible errors [10], especially in non-polar materials where band tailoring due to polaron
interaction is absent.

In the figure, we have indicated some collective experimental values of the reduced
bandgap in n-type Si (plus signs), presented by Lanyon and Tuft [33]. The squares show
the corresponding results of photoluminescence (PL) measurements performed by Dumke
[32]. Here, the reduced bandgap was determined by fitting the luminescence peaks to a
semi-empirical expression including broadening due to finite resolution of emission spectra,
incomplete thermalization of carriers and lifetime effects.

Open circles and triangles represent the PL measurements of the reduced bandgap in n-type
Si:P and p-type Si:B by Wagner and del Alamo [31], determined from a line shape analysis of
the low-energy edge of the PL spectra. The filled circles are the corresponding measured data
of the optical bandgap, given by the high-energy cut-off of the PL spectra [31]. Overall, our
calculations are in good agreement with these experimental data, although the optical bandgap
is slightly underestimated.

In figure 8, we present the PL data of the BGN in p-type boron doped Si/Si(p+)/Si(p)
pseudoheterostructures and Si/Si0.82Ge0.18(p+)/Si(p) heterostructures measured by Souifi et al
[34]. The filled triangles and rectangles indicate the BGN (�Ev1−�Ec1) in Si and Si0.82Ge0.18,
respectively. For comparison, we include the PL results of bulk Si:B of Wagner and del Alamo
[31] (open circles). The result of Souifi et al shows only small effects on the BGN due to
composition, which is in agreement with our findings (solid lines in the figure).



500 S van Teeffelen et al

0 5 10
0

50

100

150

200

(Acceptor conc.)1/3 [106 cm–1]

E
ne

rg
y 

[m
eV

]

(i)

(ii)

Figure 8. The BGN (�Ev1 − �Ec1) in p-type Si (i) and Si0.82Ge0.18 (ii) calculated from
the parametrization of equation (15). Also shown are the experimental values of the BGN in
Si/Si(p+)/Si(p) (filled circles) and Si/Si0.82Ge0.18(p+)/Si(p) (filled triangles) by Souifi et al [34],
and in p-type Si (open circles) by Wagner and del Alamo [31].

For n-type doping the calculations with parabolic and non-parabolic valence bands (this
also implies approximated and correct overlap integrals, respectively) lead to similar results.
That is reasonable, although the approximated overlap integrals �

app
vi,vi ′ (k,k′) look quite

different from the calculated ones on the first view (figure 4). However, the average over
all angles � is alike.

For p-type doping and for large concentrations the BGN obtained by using the parabolic
energy bands and the BGN obtained by using the Kohn–Luttinger Hamiltonian differ strongly.
This can been seen in figure 6(b) where the two curves describing the BGN deviate strongly
for NA > 1019 cm−3. A hole concentration of 1019 cm−3 corresponds to a Fermi energy of
about �0/2, and above this concentration the influence of the v3-band becomes recognizable
since the interaction of the v1- and v2-bands with the v3-band leads to a deformation of the
three uppermost valence bands (see figure 5). This deformation affects the band filling, and
therefore also the Fermi energy. It has been shown [10] that a good determination of the
Fermi energy is crucial in order to accurately calculate the BGN. As expected the calculation
of E2

g using the Kohn–Luttinger Hamiltonian gives a better agreement with the experimental
data than the calculation with parabolic bands. Furthermore, using the parabolic approximation
would lead to a much more underestimated optical bandgap in p-type materials than the present
k · p-method.

4. Summary

The BGN in Si and Si1−x Gex (x � 0.3) due to n-type and p-type doping has been calculated
with a Green function formalism. The band structure of the intrinsic crystal and the overlap
integrals were approximated within the k·p-method. The valence bands are in good agreement
with the band structure obtained from the FPLAPW calculation in the region of the Brillouin
zone of interest in the present investigation. The calculated values of the BGN were found
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to be in very good agreement with the experimental data. It has also turned out that the
non-parabolicity of the valence bands leads to a significant reduction of the BGN at high
dopant concentration compared to the calculation with parabolic valence bands. Therefore it
is necessary to use a non-parabolic description of these bands. The calculated values of the
BGN for Si and for Si0.7Ge0.3 differ only slightly.

There are a few effects that have not been taken into account but are of great interest. The
strain of the material in certain directions lowers the symmetry of the crystal and therefore
leads to band splitting, which is important especially at the valence band maximum. This will
affect, for instance, the band filling in p-type materials. Moreover, we have only calculated the
crystal properties at zero absolute temperature. Temperature has the effect of lifting electrons
from the valence up to the conduction band, which then will contribute to the screening. For
moderate temperatures, however, the temperature-dependentband filling in Si rich Si1−x Gex is
much lower than the critical concentration of the Mott transition. Nevertheless, the excitations
will affect the self-energy through the poles of the dielectric function [35].
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